
Table of Contents
Filesystems...1

Using Access Control Lists for File Sharing..1
Using 'Giveto' to Copy Files and/or Directories to Another User..5
Quota Policy on Disk Space and Files..7

Pleiades Home Filesystem..9
Pleiades Home Filesystems...9

Pleiades Lustre Filesystems..10
Pleiades Lustre Filesystems...10
Lustre Basics..13
Lustre Progressive File Layout (PFL) with SSD and HDD Pools...17
Lustre Best Practices...23

Pleiades BeeGFS Filesystem...30
Pleiades BeeGFS Filesystem..30
BeeGFS Basics...31

Filesystems

Using Access Control Lists for File Sharing

A common way to share files and/or directories with group members or others is to use the chmod
command to change the permissions. However, chmod has limitations, so you may sometimes
choose to use Access Control Lists (ACLs).

When you issue the command chmod g+rx filename, for example, all the members in your group
(g) gain read (r) and search/execute (x) access to that file, as shown below:

% ls -l filename
-rw------- 1 zsmith s0101 9 Jun 10 12:11 filename

% chmod g+rx filename

% ls -l filename
-rw-r-x--- 1 zsmith s0101 9 Jun 10 12:11 filename

However, chmod does not allow you to select which members of your group or which specific
individuals outside of your group can access your files/directories. ACLs provide a mechanism
for greater control of file sharing. There are two ACL commands:

setfacl

Set file access control lists.

SYNOPSIS
 setfacl [-bkndRLPvh] [{-m|-x} acl_spec] [{-M|-X} acl_file] file ...

 setfacl --restore=file

A detailed usage explanation of setfacl and its options can be found via man setfacl. Among
the options listed:

The -m or -M option lets you "modify" the ACL, where -m expects an ACL on the command
line and -M expects an ACL from a file or from standard input

1.

The -x or -X option removes the ACL entries2.
The -R or --recursive option applies operations to all files and directories recursively3.
The --test option allows you to test the effect of changing the ACL without actually
changing it

4.

The -b option removes all extended ACL entries except the base entries of the owner,
group, and others

5.

getfacl

Get file access control lists.

SYNOPSIS
 getfacl [-dRLPvh] file ...

 getfacl [-dRLPvh] -

A detailed usage explanation of getfacl and its options can be found via man getfacl.

Filesystems 1

Note: Before you grant another user or group access to certain files or directories, make sure
that access to the parent directory (where the files or directories reside) is also allowed.

Example 1

To allow another user (jbrown) to have read/execute (rx) permission on a file (filename) and to
view the ACL before and after an ACL change:

% ls -l filename
-rw------- 1 zsmith s0101 9 Jun 10 12:11 filename

% getfacl filename
file: filename
owner: zsmith
group: s0101
user::rw-
group::---
other::---

% setfacl -m u:jbrown:rx filename

% getfacl filename
file: filename
owner: zsmith
group: s0101
user::rw-
user:jbrown:r-x
group::---
mask::r-x
other::---

% ls -l filename
-rw-r-x---+ 1 zsmith s0101 9 Jun 10 12:11 filename

Example 2

To remove all extended ACLs in Example 1 except the base entries of the owner, group, and
others:

% setfacl -b filename

% ls -l filename
-rw------- 1 zsmith s0101 9 Jun 10 12:11 filename

% getfacl filename
file: filename
owner: zsmith
group: s0101
user::rw-
group::---
other::---

Example 3

Continuing from Example 1, to test the granting of read/execute (rx) access to another group
(group id 24176) without actually doing it:

% setfacl --test -m g:24176:rx filename
filename: u::rw-,u:jbrown:r-x,g::---,g:g24176:r-x,m::r-x,o::---,*

% getfacl filename
file: filename
owner: zsmith
group: s0101
user::rw-

Using Access Control Lists for File Sharing 2

user:jbrown:r-x
group::---
mask::r-x
other::---

Example 4

To allow another user (jbrown) recursive access to a directory (dir.abc which contains a file
filename):

% ls -ld dir.abc
drwx------ 2 zsmith s0101 17 Jun 10 13:19 dir.abc

% ls -l dir.abc
total 0
-rw------- 1 zsmith s0101 0 Jun 10 13:19 filename

% setfacl -R -m u:jbrown:rx dir.abc

% getfacl dir.abc
file: dir.abc
owner: zsmith
group: s0101
user::rwx
user:jbrown:r-x
group::---
mask::r-x
other::---

% getfacl dir.abc/filename
file: dir.abc/filename
owner: zsmith
group: s0101
user::rw-
user:jbrown:r-x
group::---
mask::r-x
other::---

% ls -ld dir.abc
drwxr-x---+ 2 zsmith s0101 17 Jun 10 13:19 dir.abc

% ls -l dir.abc
total 0
-rw-r-x---+ 1 zsmith s0101 0 Jun 10 13:19 filename

Example 5

Continuing from Example 4, to recursively remove all permissions user jbrown for a directory:

% setfacl -R -x u:jbrown dir.abc

% getfacl dir.abc
file: dir.abc
owner: zsmith
group: s0101
user::rwx
group::---
mask::---
other::---

% getfacl dir.abc/filename
file: dir.abc/filename
owner: zsmith
group: s0101
user::rw-
group::---
mask::---
other::---

Using Access Control Lists for File Sharing 3

For more information on ACLs, read man acl.

Using Access Control Lists for File Sharing 4

Using 'Giveto' to Copy Files and/or Directories to Another User

NAS's in-house developed giveto script is built on the use of Access Control Lists (ACLs). It
allows one user (the giver) to copy files and/or directories to a /nobackup directory of another
user (the recipient).

giveto is installed under /usr/local/bin on Pleiades and Lou.

In the example below, user zsmith gives a copy of his dir.abc directory on Pleiades to user
jbrown. The steps describe the giveto command used by each of them, and the results.

User jbrown uses the command giveto -i zsmith to automatically (a) create an INCOMING
directory (if it does not already exist) under her /nobackup/jbrown and (b) grant user
zsmith read/write/execute permission on this directory.

pfe21:/u/jbrown% giveto -i zsmith
nobackup[1] = /nobackup/jbrown

pfe21:/u/jbrown% ls -ld /nobackup/jbrown/INCOMING
drwxrwx---+ 2 jbrown s0202 4096 Jun 14 12:18 /nobackup/jbrown/INCOMING

1.

User zsmith uses the command giveto jbrown dir.abc to automatically (a) create a
subdirectory called zsmith_0 under jbrown's INCOMING directory, (b) copy dir.abc to
/nobackup/jbrown/INCOMING/zsmith_0, (c) grant user jbrown read/write/execute permission
on /nobackup/jbrown/INCOMING/zsmith_0, and (d) send an email to user jbrown regarding the
copy.

pfe21:/home1/zsmith> ls -ld dir.abc
drwx------ 2 zsmith s0101 17 Jun 14 12:21 dir.abc/

pfe21:/home1/zsmith> giveto jbrown dir.abc
setfacl -m u:jbrown:rwx zsmith_0
setfacl -m u:jbrown:rwx zsmith_0/giveto.log
setfacl -m u:jbrown:rwx zsmith_0/dir.abc
setfacl -m u:jbrown:rwx zsmith_0/dir.abc/foo2
path = /nobackup/jbrown/INCOMING/zsmith_0
total 12
drwxrwx---+ 3 zsmith s0101 4096 Jun 14 12:29 .
drwxrwx---+ 3 jbrown s0202 4096 Jun 14 12:29 ..
drwxrwx---+ 2 zsmith s0101 4096 Jun 14 12:21 dir.abc
-rw-rwx---+ 1 zsmith s0101 44 Jun 14 12:29 giveto.log

Note: If the directory zsmith_0 already exists prior to this step, zsmith_1 would be used
instead.

2.

User jbrown receives an email from user zsmith with a subject line "giveto files". They
see that the directory dir.abc has been copied successfully. Even though the directory
/nobackup/jbrown/INCOMING/zsmith_0 is still owned by user zsmith, user jbrown now has
permission to read/write/execute files and directories under
/nobackup/jbrown/INCOMING/zsmith_0.

pfe21:/u/jbrown% ls -lrt /nobackup/jbrown/INCOMING
total 4
drwxrwx---+ 3 zsmith s0101 4096 Jun 14 12:29 zsmith_0

pfe21:/u/jbrown%ls -lrt /nobackup/jbrown/INCOMING/zsmith_0
total 4
drwxrwx---+ 2 zsmith s0101 4096 Jun 14 12:21 dir.abc

pfe21:/u/jbrown%ls -lrt /nobackup/jbrown/INCOMING/zsmith_0/dir.abc
total 4
-rw-rwx---+ 1 zsmith s0101 8 Jun 14 12:21 foo2

pfe21:/u/jbrown%getfacl /nobackup/jbrown/INCOMING/zsmith_0/dir.abc

3.

Using 'Giveto' to Copy Files and/or Directories to Another User 5

file: /nobackup/jbrown/INCOMING/zsmith_0/dir.abc
owner: zsmith
group: s0101
user::rwx
user:jbrown:rwx
group::---
mask::rwx
other::---

Read man giveto for more information.

The giveto script was created by NAS staff member Arthur Lazanoff.

Using 'Giveto' to Copy Files and/or Directories to Another User 6

Quota Policy on Disk Space and Files

Filesystems on Pleiades and Lou have the following types of quotas:

Limits on the total disk space occupied by your files•
Limits on the number of files (represented by inodes) you can store, regardless of size.
For quota purposes, directories count as files.

•

Hard and Soft Quota Limits

NAS quotas have hard limits and soft limits. Hard limits should never be exceeded. Soft limits
can be exceeded temporarily, for a grace period of 14 days. If your data remains over the soft
limit for more than 14 days, the soft limit is enforced as a hard limit. On some filesystems, this
means that write attempts will fail. On other filesystems, it will mean that your PBS jobs will no
longer start. To reduce your data to below the quota limits, you can delete unneeded files or
copy important files elsewhere, such as the Lou mass storage system, and then remove them
locally.

Filesystem quotas are shown in the following table:

Pleiades Lou

$HOME NFS XFS

Space: soft 8 GB none

Space: hard 10 GB none

Inode: soft none 250,000

Inode: hard none 300,000

/nobackup Lustre /nobackuppX N/A

Space: soft 1 TB N/A

Space: hard 2 TB N/A

Inode: soft 500,000 N/A

Inode: hard 600,000 N/A
To learn how to check your disk space, inode usage, and quotas, see the following articles:

Pleiades Home Filesystem•
Pleiades Lustre Filesystems•
The Lou Mass Storage System•

Email Warnings and Consequences

It is expected that your data will exceed your soft limits as needed. When this occurs, you will
begin to receive daily emails to inform you of your current disk space and how much of your
grace period remains. However, if your data is still over the soft limit or if you reach the hard
limit, restrictions are put in place.

The following table shows the quota enforcement policy for each type of filesystem.

Filesystem Grace Period Enforcement

/nobackuppX 2 weeks Batch jobs won't run

/nobackupnfs2 2 weeks Writes are disabled

Quota Policy on Disk Space and Files 7

Pleiades home directory 2 weeks Writes are disabled

Lou home directory 2 weeks Writes are disabled
More details are available in the following sections.

Lustre Filesystems (/nobackuppX)

If your grace period has expired, then your batch queue access is restricted and no new jobs can
be run until your data on the Lustre filesystem is reduced to an amount below the soft limit. Any
jobs that are running will continue to run. If you reach the hard limit, your batch access is
immediately restricted, but any running jobs will continue.

Pleiades Home Directory and /nobackupnfs2

If your grace period has expired, then any writes to that filesystem will fail, and any jobs that
attempt to write to the filesystem will fail. You will be unable to write to the filesystem until your
data is reduced to an amount below the soft limit. Similarly, if you reach the hard limit, any
writes will immediately fail and you will be unable to write to the filesystem until your data is
reduced to an amount below the hard limit.

Lou Home Directory

If your grace period has expired, then any writes that attempt to create new files will fail. You
will be unable to create any new files until the number of files is reduced to below the soft limit.
If you reach the hard limit, any writes that attempt to create new files will fail until the number
of files is reduced to below the hard limit.

The maximum size of a tar file moved to Lou should not exceed 2 TB. If you need to archive
larger files, please contact the NAS Control Room at support@nas.nasa.gov for assistance.

Note: The Shift tool, which is a convenient way to transfer files to Lou, can created a set of
smaller independent tar files from a single large directory. For more information, see Shift File
Transfer Overview.

Changing Your Quotas

If an account needs larger quota limits, send an email justification to support@nas.nasa.gov.
Your request will be reviewed by management for approval.

Quota Policy on Disk Space and Files 8

mailto:support@nas.nasa.gov
mailto:support@nas.nasa.gov

Pleiades Home Filesystem

Pleiades Home Filesystems

The home filesystems on Pleiades are HPE/SGI NEXIS 9000 filesystems that are NFS-mounted on
all of the Pleiades front-end (PFE) nodes and compute nodes. Each NAS user is provided a home
directory on the Pleiades home filesystems, which are the home filesystems for Pleiades, Aitken,
Electra, and Endeavour. After you are granted an account, your home directory is set up
automatically during your first login.

Your home directory has a quota of 8-10 GB of storage. For temporary storage of larger files,
use the Lustre /nobackup filesystems. For long-term storage, use the Lou mass storage system.

Quota Limits and Policy

Disk space quota limits are enforced on the Pleiades home filesystems. By default, the soft limit
is 8 GB and the hard limit is 10 GB. There are no inode limits on the home filesystem.

To check your quota and usage on your home filesystem, run the quota -v command as follows:

%quota -v
Disk quotas for user username (uid xxxx):
 Filesystem blocks quota limit grace files quota limit grace
saturn-ib1-0:/mnt/home2
 7380152 8000000 10000000 190950 0 0

The NAS quota policy states that if you exceed the soft quota (the number listed under quota in
the above sample output), an email will be sent to inform you of your current usage and how
much of the grace period remains. It is expected that you will occasionally exceed your soft
limit; however, after 14 days, any attempts to write to the filesystem will result in error. Any
attempt to exceed the hard limit (the number listed under limit in the above sample output) will
result in error.

If you believe that you have a long-term need for higher quota limits on the Pleiades home
filesystem, send an email justification to support@nas.nasa.gov. Your request will be reviewed
by the HECC Deputy Project Manager for approval.

Note: For temporary storage of larger files, or a large number of files, use your Lustre
/nobackuppX directory. For normal long-term file storage, transfer your files to the Lou mass
storage systems.

See also: Quota Policy on Disk Space and Files.

TIP: If you receive the following error message when logging in, you won't be able to run X
applications. This error is usually due to exceeding your home filesystem quota. To avoid the
error, decrease your disk usage.

/usr/X11R6/bin/xauth: error in locking authority file /u/username/.Xauthority

Backup Schedule

Files on the home filesystem are backed up daily.

Pleiades Home Filesystem 9

mailto:support@nas.nasa.gov

Pleiades Lustre Filesystems

Pleiades Lustre Filesystems

Pleiades, Aitken, Electra, and Endeavour share several filesystems intended to provide working
space for compute jobs. These filesystems, called "nobackup" (/nobackuppX), provide over 90
petabytes (PB) of disk space and serve many thousands of cores. The /nobackup filesystems are
Lustre-based filesystems managed under Lustre software version 2.x.

Using the Lustre /nobackup Filesystems

As the name suggests, these "nobackup" filesystems are for temporary use, and are not backed
up. Lustre can handle many large files, but you cannot use the Lustre filesystems for long-term
storage. If you want to save your files, move them to Lou.

Each Lustre filesystem is shared among many users. To learn how to achieve good I/O
performance for your applications and avoid impeding the I/O operations of other users, read
the related articles listed at the bottom of the page.

Lustre filesystem configurations are summarized at the end of this article.

WARNING: Any files that are removed from Lustre /nobackup filesystems cannot be restored.
You should store essential data on the Lou mass storage system (lfe[5-8]) or on other, more
permanent storage.

Which Lustre Filesystem is Assigned to Me?

Once you are granted a NAS account, one of the Lustre filesystems will be assigned to you. To
find out which one, run the ls command as follows:

pfe21% ls -l /nobackup/your_username

In the output, look for the filesystem name (nobackuppX). For example, the following output
shows that the user's assigned filesystem is /nobackupp17:

lrwxrwxrwx 1 root root 19 Sep 23 2021 /nobackup/your_username -> /nobackupp17/your_username

Default Quota and Policy on /nobackup Filesystems

Disk space and inode quotas are enforced on the /nobackup filesystems. The default soft and
hard quota limits for inodes are 500,000 and 600,000, respectively. Quotas for the disk space
are 1 terabyte and 2 terabytes, respectively. To check your disk space, inode usage, and quota
on your /nobackup filesystem, run the lfs command as follows:

% lfs quota -h -u username /nobackup/username
Disk quotas for user username (uid nnnn):
 Filesystem used quota limit grace files quota limit grace
/nobackup/username 4k 1.024T 2.048T - 1 500000 600000 -

It is expected that your data will occasionally exceed the soft limit. However, after a 14-day
grace period, your access to the batch queues will be restricted and you will not be able to run
new jobs until your data is reduced below the soft limit. If you reach the hard limit, your batch
access will immediately be restricted, but any running jobs will continue.

Pleiades Lustre Filesystems 10

If you anticipate a long-term need for higher quota limits, please send a justification via email to
support@nas.nasa.gov. Your request will be reviewed by the HECC Deputy Project Manager for
approval.

For more information, see Quota Policy on Disk Space and Files.

Note: When a Lustre filesystem is full, the jobs writing to it will hang. A Lustre error with code
-28 in the system log file indicates that the filesystem is full. NAS support staff will typically send
emails to those using the most space, with a request to clean up their files.

Lustre Filesystem Configurations

The way your Lustre filesystem is configured determines how your files are striped. There are
two types of configurations: Progressive File Layout (PFL), and the standard Lustre
configuration. Most of the /nobackup filesystems have PFL configurations.

Progressive File Layout Configurations

Lustre's Progressive File Layout (PFL) feature enables filesystems to dynamically change the
stripe count for files based on their size. This means that the files are dynamically
striped, therefore, you should not set custom stripe size or stripe counts.

The Lustre PFL filesystems are /nobackupp[10-29]; among them, /nobackupp[17-19, 27-29] are
equipped with a small number of solid state drives (SSDs) in addition to the hard disk drives
(HDDs), while /nobackupp[10-13,15-16] only have HDDs.

The HDD configurations of /nobackupp[10-29] are listed in the table below with the abbreviation
nbpX. P = petabytes; T = terabytes; M = megabytes.

Lustre PFL HDD Configurations

Filesystem nbp10 nbp11 nbp12,13,15 nbp17,18 nbp19 nbp27,28 nbp29

of OSTs 46 69 23 32 16 32 16

size/OST 70.7 T 70.7 T 70.7 T 565 T 565 T 565 T 565 T

Total Space 3.2 P 4.8 P 1.6 P 18.6 P 9.3 P 18.6 P 9.3 P
For /nobackupp[10-13,15-16], which have only HDDs, a common default PFL stripe setting is
used as follows:

Lustre PFL Stripe Counts per File Size

File Size 0 - 10 MB 10 MB - 17 GB 17 - 68 GB > 68 GB

Stripe Count 1 4 8 16
For /nobackupp[17-19, 27-29], different PFL configurations are set among the SSD and HDD
pools. To learn more, see Progressive File Layout with SSD and HDD Pools.

Standard Configurations

The standard Lustre filesystems are /nobackupp1 and 2; in the table below, these are
abbreviated as nbpX. P = petabytes; T = terabytes; M = megabytes.

Standard Lustre Configurations

Filesystem nbp1 nbp2

Pleiades Lustre Filesystems 11

mailto:support@nas.nasa.gov

of OSTs 144 342

size/OST 43.6/57.2 T 43.6/71.2 T

Total Space 7.1 P 18 P

Default Stripe Size 1 M 1 M

Default Stripe Count 4 4

Pleiades Lustre Filesystems 12

Lustre Basics

A Lustre filesystem is a high-performance shared filesystem for Linux clusters that is managed
with Lustre software. It is highly scalable and can support many thousands of client nodes,
petabytes of storage, and hundreds of gigabytes per second of I/O throughput. The NAS Lustre
filesystems are named "/nobackuppX."

Each Lustre filesystem is actually a set of many small filesystems, which are referred to as
object storage targets (OSTs). The Lustre software presents the OSTs as a single unified
filesystem.

For more information about OSTs and other Lustre filesystem components, see Main Lustre
Components.

Useful Lustre Commands

The examples in this section use /nobackupp17 as an example of a specific Lustre filesystem.

Listing Disk Usage and Quotas

To display disk usage and limits on your /nobackup directory:

pfe21% lfs quota -h -u username /nobackupp17

or

pfe21% lfs quota -h -u username /nobackup/username

To display usage on each OST, add the -v option:

pfe21% lfs quota -h -v -u username /nobackup/username

Listing Space Usage

To list space usage per OST and MDT, in human-readable format, for all Lustre filesystems or for
a specific one:

pfe21% lfs df -h
pfe21% lfs df -h /nobackupp17

Listing Inode Usage

To list inode usage for all filesystems or for a specific one:

pfe21% lfs df -i
pfe21% lfs df -i /nobackupp17

Listing OSTs

To list all the OSTs for the filesystem:

pfe21% lfs osts /nobackupp17

Lustre Basics 13

Viewing Striping Information

To view the striping information for a specific file or directory:

pfe21% lfs getstripe filename
pfe21% lfs getstripe -d directory_name

Note: Omitting the -d flag will display striping for all files in the directory.

File Striping

Files on the Lustre filesystems are striped automatically. This means they are transparently
divided into chunks that are written or read simultaneously across a set of OSTs within the
filesystem. The chunks are distributed among the OSTs using a method that ensures load
balancing. Files larger than 100 gigabytes (GB) must be striped in order to avoid taking up too
much space on any single OST, which might adversely affect the filesystem.

Benefits include:

Striping allows one or more clients to read/write different parts of the same file at the
same time, providing higher I/O bandwidth to the file because the bandwidth is
aggregated over the multiple OSTs.

•

Striping allows file sizes larger than the size of a single OST.•

However, striping small files increases the number of objects in each file, resulting in increased
overhead due to network operationsâ��sometimes creating server contention. This is not likely
to cause problems for files larger than 4 megabytes (MB), but in many cases, striping can cause
noticeably slower read/write performance for files smaller than 4 MB.

Progressive File Layout

With the deployment of the new Lustre progressive file layout (PFL) feature, different stripe
settings for different segments of a file can be configured in such a way that a small stripe count
is used for the beginning segment and larger stripe counts are used for latter segments as the
file grows. The newer Pleiades Lustre filesystems, /nobackupp[10-29], have all been configured
with NAS-selected PFL settings.

Important: In most cases, you should rely on these defaults and not manually set file striping
yourself. The information in the following sections are useful when using the older, non-PFL
filesystems, /nobackupp[1-2].

To learn more about filesystems configured with PFL, see Progressive File Layout with SSD and
HDD Pools.

Selecting a Stripe Count

The default stripe count on /nobackupp[1-2] filesystems is currently 4. The following examples
describe circumstances where it is beneficial to change the stripe count to a different number:

Your program reads a single large input file, where many nodes read or write different
parts of the file at the same time. You should stripe this file adequately to prevent all the
nodes from reading from the same OST at the same time. This will avoid creating a

•

Lustre Basics 14

bottleneck in which your processes try to read from a single set of disks.
You have other large files. You should restripe large files adequately to keep capacity
balanced across the OSTs and maintain consistent performance for all users.

•

Your program waits while a large output file is written. You should stripe the large file so
that it will write faster, in order to reduce the amount of time the processors are idle.

•

Your program periodically writes several small files from each processor. It is not usually
necessary to have a stripe count greater than 1 for small files, and they will be randomly
distributed across the OSTs to maintain good performance and capacity balance in
aggregate.

•

Setting Stripe Parameters

There are default stripe configurations for each Lustre filesystem. To check the existing stripe
settings on your directory, use the lfs getstripe command as follows:

pfe21% lfs getstripe -d /nobackup/username

In most cases, the only tuning you need to do is to change the number of OSTs that your files
are written to. To change the number of OSTs, use the lfs setstripe command as follows:

pfe21% lfs setstripe -c stripe_count dir|filename

Note: The stripe settings of an existing file cannot be changed. If you want to change the
settings of a file, create a new file with the desired settings and copy the existing file to the
newly created file.

Examples of Striping

Newly created files and directories inherit the stripe settings of their parent directories. You can
take advantage of this feature by organizing your large and small files into separate directories,
then setting a stripe count on the large-file directory so that all new files created in the directory
will be automatically striped. For example, to create a directory called "restart" with a stripe
count of 8, run:

pfe21% mkdir restart
pfe21% lfs setstripe -c 8 restart

You can "pre-create" a file as a zero-length striped file by running lfs setstripe as part of your
job script or as part of the I/O routine in your program. Then, you can write to that file later. For
example, to pre-create the file "big_dir.tar" with a stripe count of 20, and then add data from
the large directory "big_dir," run:

pfe21% lfs setstripe -c 20 big_dir.tar
pfe21% tar cf big_dir.tar big_dir

Advanced Parameters

The following stripe parameters are rarely needed, but could potentially be useful, depending on
your application I/O:

Stripe size: -S
Sets the size of the chunks in bytes. Use with k, m, or g to specify units of KB, MB, or GB,
respectively (for example, -S 2m). The specified size must be a multiple of 65,536 bytes
(64 KB). The default size is 1 MB for all Pleiades Lustre filesystems; specify 0 to use the

Lustre Basics 15

default.
Stripe offset: -o

Sets the index of the OST where the first stripe is to be placed. The default is -1, which
results in random selection. Using a non-default value is not recommended.

See the lfs man page for more options and information.

Main Lustre Components

Lustre filesystem components include:

Metadata Server (MDS)
Service nodes that manage all metadata operations, such as assigning and tracking the
names and storage locations of directories and files on the OSTs. There is 1 MDS per
filesystem.

Object Storage Target (OST)
Storage devices where users' file data is stored. The size of each OST varies from
approximately 7 terabytes (TB) to approximately 22 TB, depending on the Lustre
filesystem. The capacity of a Lustre filesystem is the sum of the sizes of all OSTs. There
are multiple OSTs per filesystem.

Metadata Target (MDT)
A storage device where the metadata (name, ownership, permissions and file type) are
stored. There is 1 MDT per filesystem.

Object Storage Server (OSS)
Service nodes that run the Lustre software stack, provide the actual I/O service and
network request handling for the OSTs, and coordinate file locking with the MDS. Each
OSS can serve multiple OSTs. The aggregate bandwidth of a Lustre filesystem can
approach the sum of bandwidths provided by the OSSes. There can be 1 or multiple
OSSes per filesystem.

Lustre Clients
Compute nodes that mount the Lustre filesystem, and access/use data in the filesystem.
There are commonly thousands of Lustre clients per filesystem.

Lustre Basics 16

Lustre Progressive File Layout (PFL) with SSD and HDD Pools

Hard disk drives (HDDs) and solid state drives (SSDs) are the two main storage options
commonly deployed in data centers. With HDD, data are stored magnetically in spinning disks,
and data retrieval is slow; therefore, HDD is practical only for data that does not need to be
accessed frequently. SSDs are a newer technology where data is stored in integrated circuits,
which dramatically reduces access time. Because SSDs are more expensive than HDDs, a hybrid
solution provides a good compromise between price and performance.

Six of the NAS Lustre filesystems, /nobackupp[17-19, 27-29], are configured with Progressive
File Layout (PFL) with HDDs and SSDs configured as different Lustre pools. This article provides
information about these filesystems using /nobackupp17 as an example.

SSD and HDD Pools

To view a list of a filesystem's object storage targets (OSTs) showing whether they are in the
HDD pool or the SSD pool, use the lfs pool_list command. The OSTs are shown in hexadecimal
format:

pfe% lfs pool_list nbp17.hdd-pool
Pool: nbp17.hdd-pool
nbp17-OST0000_UUID
nbp17-OST0001_UUID
..
nbp17-OST001e_UUID
nbp17-OST001f_UUID

pfe% lfs pool_list nbp17.ssd-pool
Pool: nbp17.ssd-pool
nbp17-OST0064_UUID
nbp17-OST0065_UUID
...
nbp17-OST0082_UUID
nbp17-OST0083_UUID

The available SSD space in each filesystem is much smaller than the HDD space. In the example
below, the lfs df command shows that the size of each /nobackupp17 HDD OST is 565.0
terabytes (TB), while each SSD OST is only 30.3 TB. The output also shows both the
hexadecimal (far left) and decimal (far right) labels of each OST.

pfe% lfs df -h /nobackupp17 | grep OST
nbp17-OST0000_UUID 565.0T 322.7T 213.8T 61% /nobackupp17[OST:0]
nbp17-OST0001_UUID 565.0T 323.5T 213.0T 61% /nobackupp17[OST:1]
...
nbp17-OST001e_UUID 565.0T 322.9T 213.7T 61% /nobackupp17[OST:30]
nbp17-OST001f_UUID 565.0T 325.1T 211.4T 61% /nobackupp17[OST:31]
nbp17-OST0064_UUID 30.3T 23.5T 6.4T 79% /nobackupp17[OST:100]
nbp17-OST0065_UUID 30.3T 23.5T 6.4T 79% /nobackupp17[OST:101]
...
nbp17-OST0082_UUID 30.3T 23.5T 6.5T 79% /nobackupp17[OST:130]
nbp17-OST0083_UUID 30.3T 23.5T 6.5T 79% /nobackupp17[OST:131]

Configuration of the /nobackupp[17-19, 27-29] Filesystems

The following table summarizes the configurations of /nobackupp[17-19, 27-29].

Filesystem nbp17 nbp18 nbp19 nbp27 nbp28 nbp29

of OSTs in
HDD

32
(OST: 0-31)

32
(OST: 0-31)

16
(OST: 0-15)

32
(OST: 0-31)

32
(OST: 0-31)

16
(OST:
0-15)

Lustre Progressive File Layout (PFL) with SSD and HDD Pools 17

https://www.nas.nasa.gov/hecc/support/kb/lustre-basics_224.html#components

Size/OST in
HDD

565.0 T 565.0 T 565.0 T 565.0 T 565.0 T 565.0 T

Total Space in
HDD

18.6 P 18.6 P 9.3 P 18.6 P 18.6 P 9.3 P

of OSTs in
SSD

32
(OST:
100-131)

16
(OST:
100-115)

16
(OST:
100-115)

32
(OST:
100-131)

16
(OST:
100-115)

16
(OST:
100-115)

Size/OST in
SSD

30.3 T 60.5 T 29.6 T 30.3 T 60.5 T 29.6 T

Total Space in
SSD

~ 1 P ~ 1 P ~ 0.5 P ~ 1 P ~ 1 P ~ 0.5 P

Progressive File Layout (PFL)

The /nobackupp[17-19, 27-29] filesystems take advantage of the Lustre PFL feature, which
increases the stripe count of each file in a step-wise manner as the file grows in size.
Specifically, PFL is built using composite layouts described by a series of components. Each
component covers a non-overlapping portion of the file and has its own stripe setting in size,
count, index and pool.

Default PFL Configurations

For each filesystem, a NAS-created default layout provides reasonable performance for a variety
of file I/O patternsâ��and relieves users of the need to determine and set striping.

To find the default layout of each filesystem, use the lfs getstripe command as follows:

pfe% lfs getstripe -d /nobackupp17
lcm_layout_gen: 0
...
 lcme_extent.e_start: 0
 lcme_extent.e_end: 268435456
 stripe_count: 1 stripe_size: 16777216 pattern: raid0 stripe_offset: -1 pool: ssd-pool

 ...
 lcme_extent.e_start: 268435456
 lcme_extent.e_end: 5368709120
 stripe_count: 16 stripe_size: 16777216 pattern: raid0 stripe_offset: -1 pool: ssd-pool

 ...
 lcme_extent.e_start: 5368709120
 lcme_extent.e_end: EOF
 stripe_count: 16 stripe_size: 16777216 pattern: raid0 stripe_offset: -1 pool: hdd-pool

The output shows that /nobackupp17 is configured with three components:

The first component setting applies to the file segment from the beginning up to
268435456 B (256 MB), with a stripe count of 1 and stripe size of 16 MB; this component
uses ssd-pool.

•

The second component setting applies to the file segment from 256 MB to 5 GB with a
stripe count of 16 and stripe size of 16 MB; this component uses ssd-pool.

•

The last component setting applies to the file segment from 5 GB to the end of the file
with a stripe count of 16 and stripe size of 16 MB; this component uses hdd-pool.

•

With this composite layout, I/O to and from the first 5 GB of files will benefit from the higher
performance of SSDs.

Note: The default component layouts may be adjusted by NAS system administrators as needed.

Lustre Progressive File Layout (PFL) with SSD and HDD Pools 18

Customized PFL Configurations

If you have experience using the PFL feature, and you want to have more control of your
application's I/O, you can choose your own composite layouts using the lfs setstripe command
with various options, such as --component-end (or -E), --stripe-size (or -S), --stripe-count (or
-c), --overstripe-count (or -C), --pool (or -p). For example:

lfs setstripe \
 -E 256M -C 1 -S 1M -p ssd-pool \
 -E 4G -C 4 -S 1M -p ssd-pool \
 -E EOF -C 16 -S 1M -p hdd-pool \
directory_name_or_filename

Note: If not explicitly set, files inherit layouts from their parent directory.

WARNING: SSD space is limited. Therefore, do not set striping for very large files to use only the
SSD pool.

Mirroring and Migration of Data from SSD to HDD

As the limited SSD space fills up, data that is stored in SSDs is migrated over to HDDs to free up
SSD space for I/O by new jobs. This automatic migration is accomplished through a mirroring
mechanism.

After a file is closed, SSD data is queued to be mirrored to the HDD. The data will be in dual
stateâ��stored on both the SSD and the HDDâ��until SSD usage reaches a certain point; then,
the SSD copy will be removed to free up space. Typically, the oldest files are removed first when
SSD usage reaches 80%, and other files are removed more aggressively when usage reaches
90%. The mirroring and migration settings may be adjusted by NAS system administrators as
needed.

Note: Mirrored data that exists in both SSDs and HDDs are counted twice against your quota.

To find out if a file is in dual state or has been migrated completely to HDDs, use the lfs
getstripe filename command, as shown in the next two examples.

Output Showing Data in Dual State

If the lfs getstripe filename output shows entries with different values for lcme_mirror_id, the
data is in dual state, as illustrated in this example:

pfe% lfs getstripe file1
file1
 lcm_layout_gen: 5
 lcm_mirror_count: 2
 lcm_entry_count: 4
 lcme_id: 65537
 lcme_mirror_id: 1 <-------
 lcme_flags: init,prefer
 lcme_extent.e_start: 0
 lcme_extent.e_end: 268435456
 lmm_stripe_count: 1
 lmm_stripe_size: 16777216
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 128
 lmm_pool: ssd-pool
 lmm_objects:
 - 0: { l_ost_idx: 128, l_fid: [0x800000409:0x413e0a:0x0] }

Lustre Progressive File Layout (PFL) with SSD and HDD Pools 19

 lcme_id: 65538
 lcme_mirror_id: 1 <--------
 lcme_flags: init,prefer
 lcme_extent.e_start: 268435456
 lcme_extent.e_end: 5368709120
 lmm_stripe_count: 16
 lmm_stripe_size: 16777216
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 103
 lmm_pool: ssd-pool
 lmm_objects:
 - 0: { l_ost_idx: 103, l_fid: [0x340000409:0x4305bb:0x0] }
 - 1: { l_ost_idx: 131, l_fid: [0x500000409:0x449f9f:0x0] }

 - 14: { l_ost_idx: 120, l_fid: [0x9c000040a:0x415384:0x0] }
 - 15: { l_ost_idx: 127, l_fid: [0x7c0000409:0x4100a6:0x0] }

 lcme_id: 65539
 lcme_mirror_id: 1 <---------
 lcme_flags: init
 lcme_extent.e_start: 5368709120
 lcme_extent.e_end: EOF
 lmm_stripe_count: 16
 lmm_stripe_size: 16777216
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 27
 lmm_pool: hdd-pool
 lmm_objects:
 - 0: { l_ost_idx: 27, l_fid: [0xfc0000400:0xd887b2:0x0] }
 - 1: { l_ost_idx: 26, l_fid: [0xb00000404:0xd8ed7c:0x0] }

 - 14: { l_ost_idx: 23, l_fid: [0xe40000400:0xd97afb:0x0] }
 - 15: { l_ost_idx: 9, l_fid: [0xe00000400:0x36d9a4:0x0] }

 lcme_id: 131073
 lcme_mirror_id: 2 <--------
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 16
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 9
 lmm_pool: hdd-pool
 lmm_objects:
 - 0: { l_ost_idx: 9, l_fid: [0xe00000400:0x36d9bd:0x0] }
 - 1: { l_ost_idx: 19, l_fid: [0x120000040d:0xdaa1a0:0x0] }

 - 14: { l_ost_idx: 28, l_fid: [0xf40000400:0xd7c343:0x0] }
 - 15: { l_ost_idx: 11, l_fid: [0xc00000402:0x36d1eb:0x0] }

Output Showing Data Completely Migrated to HDDs

This example shows an older file that has been completely migrated to HDDs:

pfe% lfs getstripe file2
file2
 lcm_layout_gen: 2
 lcm_mirror_count: 1
 lcm_entry_count: 1
 lcme_id: 131073
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0 <-----
 lcme_extent.e_end: EOF <-----
 lmm_stripe_count: 16
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 24
 lmm_pool: hdd-pool
 lmm_objects:

Lustre Progressive File Layout (PFL) with SSD and HDD Pools 20

 - 0: { l_ost_idx: 24, l_fid: [0xd8000040e:0x475b02:0x0] }
 - 1: { l_ost_idx: 3, l_fid: [0x130000040e:0x4733cd:0x0] }

 - 14: { l_ost_idx: 20, l_fid: [0xc8000040e:0x482bcc:0x0] }
 - 15: { l_ost_idx: 18, l_fid: [0xe8000040e:0x47cc62:0x0] }

Note: When your file is completely migrated to HDD (removed from SDD), the (ctime) of the file
will change to the creation time of the mirrored copy on HDD, as described below.

Change Time (ctime) Example

When a file is mirrored, a second copy of the data is created. The file will retain both sets of
data until you break the mirror, or when the filesystem automatically flushes the SSD poolâ��at
which time, the (ctime) will be updated to reflect the time the mirror was created.

In the following example, the stat command is used to show the time metadata of a test file that
was created at 15:48:45:

% stat testfile
 File: 'testfile'
 Size: 59535 Blocks: 120 IO Block: 4194304 regular file
Device: 521e79ech/1377729004d Inode: 342273918398214817 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2022-02-14 15:48:45.000000000 -0800
Modify: 2022-02-14 15:48:45.000000000 -0800
Change: 2022-02-14 15:48:45.000000000 -0800

At time 15:50:27, the file is mirrored but the ctime remains unchanged:

% stat testfile
 File: 'testfile'
 Size: 59535 Blocks: 120 IO Block: 4194304 regular file
Device: 521e79ech/1377729004d Inode: 342273918398214817 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2022-02-14 15:48:45.000000000 -0800
Modify: 2022-02-14 15:48:45.000000000 -0800
Change: 2022-02-14 15:48:45.000000000 -0800
 Birth: -

pfe25 /nobackupp18/username % lfs getstripe testfile
testfile
 lcm_layout_gen: 1
 lcm_mirror_count: 2
 lcm_entry_count: 4
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init,prefer
 lcme_extent.e_start: 0
 lcme_extent.e_end: 268435456
 lmm_stripe_count: 1
 lmm_stripe_size: 16777216
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 109
 lmm_pool: ssd-pool
 lmm_objects:
 - 0: { l_ost_idx: 109, l_fid: [0x90000040a:0x53990:0x0] }

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: prefer
 lcme_extent.e_start: 268435456
 lcme_extent.e_end: 5368709120
 lmm_stripe_count: -1
 lmm_stripe_size: 16777216
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: ssd-pool

Lustre Progressive File Layout (PFL) with SSD and HDD Pools 21

 lcme_id: 65539
 lcme_mirror_id: 1
 lcme_flags: 0
 lcme_extent.e_start: 5368709120
 lcme_extent.e_end: EOF
 lmm_stripe_count: 16
 lmm_stripe_size: 16777216
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: hdd-pool

 lcme_id: 131073
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_pool: hdd-pool
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x2c0000409:0x30c3e:0x0] }

Later, the file is flushed from the SSD. At that time, the file's ctime is updated to reflect the
creation time of the copy on HDD:

% stat testfile
 File: 'testfile'
 Size: 59535 Blocks: 120 IO Block: 4194304 regular file
Device: 521e79ech/1377729004d Inode: 342273918398214817 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2022-02-14 15:50:27.000000000 -0800
Modify: 2022-02-14 15:48:45.000000000 -0800
Change: 2022-02-14 15:50:27.000000000 -0800
 Birth: -

References

Progressive File Layout•
File Level Redundancy•
Layout Enhancement High Level Design•

Lustre Progressive File Layout (PFL) with SSD and HDD Pools 22

https://build.whamcloud.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml#pfl
https://build.whamcloud.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml#flr
https://wiki.lustre.org/Layout_Enhancement_High_Level_Design

Lustre Best Practices

At NAS, Lustre (/nobackup) filesystems are shared among many users and many application
processes, which can cause contention for various Lustre resources. This article explains how
Lustre I/O works, and provides best practices for improving application performance.

How Does Lustre I/O Work?

When a client (a compute node from your job) needs to create or access a file, the client queries
the metadata server (MDS) and the metadata target (MDT) for the layout and location of the
file's stripes. Once the file is opened and the client obtains the striping information, the MDS is
no longer involved in the file I/O process. The client interacts directly with the object storage
servers (OSSes) and object storage targets (OSTs) to perform I/O operations such as locking,
disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades contend for shared resources in NAS's Lustre filesystem. Each server
that is part of a Lustre filesystem can only handle a limited number of I/O requests (read, write,
stat, open, close, etc.) per second. An excessive number of such requests, from one or more
users and one or more jobs, can lead to contention for storage resources.. Contention slows the
performance of your applications and weakens the overall health of the Lustre filesystem. To
reduce contention and improve performance, please apply the examples below to your compute
jobs while working in our high-end computing environment.

Best Practices

Avoid Using ls -l

The ls -l command displays information such as ownership, permission, and size of all files and
directories. The information on ownership and permission metadata is stored on the MDTs.
However, the file size metadata is only available from the OSTs. So, the ls -l command issues
RPCs to the MDS/MDT and OSSes/OSTs for every file/directory to be listed. RPC requests to the
OSSes/OSTs are very costly and can take a long time to complete if there are many files and
directories.

Use ls by itself if you just want to see if a file exists•
Use ls -l filename if you want the long listing of a specific file•

Avoid Having a Large Number of Files in a Single Directory

Opening a file keeps a lock on the parent directory. When many files in the same directory are
to be opened, it creates contention. A better practice is to split a large number of files (in the
thousands or more) into multiple subdirectories to minimize contention.

Avoid Accessing Small Files on Lustre Filesystems

Accessing small files on the Lustre filesystem is not efficient. When possible, keep them on an
NFS-mounted filesystem (such as your home filesystem on Pleiades /u/username) or copy them

Lustre Best Practices 23

http://www.nas.nasa.gov/hecc/support/kb/Lustre_Basics_224.html#striping

from Lustre to /tmp on each node at the beginning of the job, and then access them from /tmp.

Keep Copies of Your Source Code on the Pleiades Home Filesystem
and/or Lou

Be aware that files under /nobackup are not backed up. Make sure that you save copies of your
source codes, makefiles, and any other important files on your Pleiades home filesystem. If your
Pleiades home directory quota isn't large enough to keep all of these files, you can request a
larger quota and/or create tarred copies of these files on Lou.

Avoid Accessing Executables on Lustre Filesystems

There have been a few incidents on Pleiades where users' jobs encountered problems while
accessing their executables on the /nobackup filesystem. The main issue is that the Lustre
clients can become unmounted temporarily when there is a very high load on the Lustre
filesystem. This can cause a bus error when a job tries to bring the next set of instructions from
the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run executables from
your home filesystem on Pleiades. On rare occasions, running executables from the Lustre
filesystem can cause executables to be corrupted. Avoid copying new executables over existing
ones of the same name within the Lustre filesystem. The copy causes a window of time (about
20 minutes) where the executable will not function. Instead, the executable should be accessed
from your home filesystem during runtime.

Limit the Number of Processes Performing Parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or fewer, there will
be contention if a large number of processes of an application are involved in parallel I/O.
Instead of allowing all processes to do the I/O, choose just a few processes to do the work. For
writes, these few processes should collect the data from other processes before the writes. For
reads, these few processes should read the data and then broadcast the data to others.

Understand the Effect of Stripe Counts/Sizes for MPI Collective Writes

For programs that call MPI collective write functions, such as MPI_File_write_all,
MPI_File_write_at_all, and MPI_File_write_ordered, it is important to understand the effect of
stripe counts on performance.

Background

MPI I/O supports the concept of collective buffering. For some filesystems, when multiple MPI
processes are writing to the same file in a coordinated manner, it is much more efficient for the
different processes to send their writes to a subset of processes in order to do a smaller number
of bigger writes. By default, with collective buffering, the write size is set to be the same as the
stripe size of the file.

With Lustre filesystems, there are two main factors in the SGI MPT algorithm that chooses the
number of MPI processes to do the writes: the stripe count and number of nodes. When the
number of nodes is greater than the stripe count, the number of collective buffering processes is

Lustre Best Practices 24

the same as the stripe count. Otherwise, the number of collective buffering processes is the
largest integer less than the number of nodes that evenly divides the stripe count. In addition,
MPT chooses the first rank from the first n nodes to come up with n collective buffering
processes.

Note: Intel MPI behaves similarly to SGI MPT on Lustre filesystems.

Enabling Collective Buffering Automatically

You can let each MPI implementation enable collective buffering for you, without any code
changes.

SGI MPT automatically enables collective buffering for the collective write calls using the
algorithm described above. This method requires no changes in the user code or in the mpiexec
command line. For example, if the stripe count is 1, only rank 0 does the collective writes, which
can result in poor performance. Therefore, experimenting with different stripe counts on the
whole directory and/or individual files is strongly recommended.

Intel MPI also does collective buffering, similar to SGI MPT, when the I_MPI_EXTRA_FILESYSTEM
and I_MPI_EXTRA_FILESYSTEM_LIST variables are set appropriately, as follows:

mpiexec.hydra -env I_MPI_EXTRA_FILESYSTEM on \
 -env I_MPI_EXTRA_FILESYSTEM_LIST lustre \
 -np xx a.out

Enabling Collective Buffering via Code Changes

In this method, you provide "hints" in the source code to inform MPI what to do with specific
files. For example:

 call MPI_Info_create(info, status)
 call MPI_Info_set(info, "romio_cb_write", "enable", STATUS)
 call MPI_Info_set(info, "striping_unit", "1048576", STATUS)
 call MPI_Info_set(info, "striping_factor", "16", STATUS)
 ...
 call MPI_File_open(MPI_COMM_WORLD, file_name, MPI_MODE_WRONLY, info, unit, status)

Note: The hints are only advisory and may not be honored. For example, SGI MPT 2.12r26
honors these hints, but MPT 2.14r19 does not. Intel MPI 5.0x honors these hints when the
I_MPI_EXTRA_FILESYSTEM and I_MPI_EXTRA_FILESYSTEM_LIST variables are set appropriately, as
follows:

mpiexec.hydra -env I_MPI_EXTRA_FILESYSTEM on \
 -env I_MPI_EXTRA_FILESYSTEM_LIST lustre \
 -np xx a.out

Stripe Align I/O Requests to Minimize Contention

Stripe aligning means that the processes access files at offsets that correspond to stripe
boundaries. This helps to minimize the number of OSTs a process must communicate for each
I/O request. It also helps to decrease the probability that multiple processes accessing the same
file communicate with the same OST at the same time.

One way to stripe-align a file is to make the stripe size the same as the amount of data in the
write operations of the program.

Lustre Best Practices 25

Avoid Repetitive "stat" Operations

Some users have implemented logic in their scripts to test for the existence of certain files. Such
tests generate "stat" requests to the Lustre server. When the testing becomes excessive, it
creates a significant load on the filesystem. A workaround is to slow down the testing process by
adding sleep in the logic. For example, the following user script tests the existence of the files
WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
 end

When neither the WAIT nor STOP file exists, the loop ends up testing for their existence as
quickly as possible (on the order of 5,000 times per second). Adding sleep inside the loop slows
down the testing.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif

sleep 15
 end

Avoid Having Multiple Processes Open the Same File(s) at the Same
Time

On Lustre filesystems, if multiple processes try to open the same file(s), some processes will not
able to find the file(s) and your job will fail.

The source code can be modified to call the sleep function between I/O operations. This will
reduce the occurrence of multiple, simultaneous access attempts to the same file from different
processes.

100 open(unit,file='filename',IOSTAT=ierr)
 if (ierr.ne.0) then
 ...

call sleep(1)
 go to 100
 endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

Lustre Best Practices 26

Avoid Repetitive Open/Close Operations

Opening files and closing files incur overhead and repetitive open/close should be avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the open
statement. If possible, read the files once each and save the results, instead of reading the files
repeatedly.

If you intend to write to a file many times during a run, open the file once at the beginning of
the run. When all writes are done, close the file at the end of the run.

See Lustre Basics for more information.

Use the Soft Link to Refer to Your Lustre Directory

Your /nobackup directory is created on a specific Lustre filesystem, such as /nobackupp17 or
/nobackupp18, but you can use a soft link to refer to the directory no matter which filesystem it
is on:

/nobackup/your_username

By using the soft link, you can easily access your directory without needing to know the name of
the underlying filesystem. Also, you will not need to change your scripts or re-create any
symbolic links if a system administrator needs to migrate your data from one Lustre filesystem
to another.

Preserve Corrupted Files for Investigation

When you notice a corrupted file in your /nobackup directory, it is important to preserve the file
to allow NAS staff to investigate the cause of corruption. To prevent the file from being
accidentally overwritten or deleted by your scripts, we recommend that you rename the
corrupted file using:

pfe% mv filename filename.corrupted

Note: Do not use cp to create a new copy of the corrupted file.

Report the problem to NAS staff by sending an email to support@nas.nasa.gov. Include how,
when, where the corrupted file was generated, and anything else that may help with the
investigation.

Best Practices for Non-PFL Filesystems

Important: The tips in this section apply only to /nobackupp[1-2].

Use a Stripe Count of 1 for Directories with Many Small Files

Note: Skip this tip if you are using the PFL filesystems, nobackupp[10-29].

If you must keep small files on Lustre, be aware that stat operations are more efficient if each

Lustre Best Practices 27

mailto:support@nas.nasa.gov

small file resides in one OST. Create a directory to keep small files in, and set the stripe count to
1 so that only one OST will be needed for each file. This is useful when you extract source and
header files (which are usually very small files) from a tarfile. Use the Lustre utility lfs to create
a specific striping pattern, or find the striping pattern of existing files.

pfe21% mkdir dir_name
pfe21% lfs setstripe -c 1 dir_name
pfe21% cd dir_name
pfe21% tar -xf tar_file

If there are large files in the same directory tree, it may be better to allow them to stripe across
more than one OST. You can create a new directory with a larger stripe count and copy the
larger files to that directory. Note that moving files into that directory with the mv command will
not change the stripe count of the files. Files must be created in or copied to a directory to
inherit the stripe count properties of a directory.

pfe21% mkdir dir_count_4
pfe21% lfs setstripe -c 4 dir_count_4
pfe21% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100 MB) and a few very large files
(greater than 1 GB), then it may be better to create a new subdirectory with a larger stripe
count. Store just the large files and create symbolic links to the large files using the symlink
command ln.

pfe21% mkdir dir_name
pfe21% lfs setstripe -c 16 dir_name
pfe21% ln dir_name/large_file large_file

Increase the Stripe Count for Parallel Access to the Same File

Note: Skip this tip if you are using the PFL filesystems, nobackupp[10-29].

The Lustre stripe count sets the number of OSTs the file will be written to. When multiple
processes access blocks of data in the same large file in parallel, I/O performance may be
improved by setting the stripe count to a larger value. However, if the stripe count is increased
unnecessarily, the additional metadata overhead can degrade performance for small files.

By default, the stripe count is set to 4, which is a reasonable compromise for many workloads
while still providing efficient metadata access (for example, to support the ls -l command).
However, for large files, the stripe count should be increased to improve the aggregate I/O
bandwidth by using more OSTs in parallel. In order to achieve load balance among the OSTs, we
recommend using a value that is an integral factor of the number of processes performing the
parallel I/O. For example, if your application has 64 processes performing the I/O, you could test
performance with stripe counts of 8, 16, and 32.

TIP: To determine which number to start with, find the approximate square root of the size of
the file in GB, and test performance with the stripe count set to the integral factor closest to
that number. For example, for a file size of 300 GB the square root is approximately 17; if your
application uses 64 processes, start performance testing with the stripe count set to 16.

Restripe Large Files

Note: Skip this tip if you are using the PFL filesystems, nobackupp[10-29].

If you have other large files, make sure they are adequately striped. You can use a minimum of
one stripe per 100 GB (one stripe per 10 GB is recommended), up to a maximum stripe count of

Lustre Best Practices 28

120. If you plan to use the file as job input, consider adjusting the stripe count based on the
number of parallel processes, as described in the previous section.

If you have files larger than 15 TB, please contact User Services for more guidelines specific to
your use case.

We recommend using the shiftc tool to restripe your files. For example:

Run ls -lh to view the size of the file(s):

% ls -lh data/large_file data/huge_file
-rw-rw---- 1 zsmith g1001 555G Apr 14 22:21 data/large_file
-rw-rw---- 1 zsmith g1001 3.2T Apr 14 22:21 data/huge_file

When a file is less than 1,200 GB, simply use one stripe per 10 GB. For a larger file, you
can specify a maximum stripe count of 120.

1.

Use shiftc to copy the file to a new file with this number of stripes:

% shiftc --stripe=10g large_file large_file.restripe
% shiftc --stripe=120 huge_file huge_file.restripe

2.

Verify that the file was successfully copied. You should receive an email report generated
by the shiftc command, or you can run shiftc --status. In the email or status output,
check that the state of the operation is "done".

3.

Move the new file in place of the old file:

% mv large_file.restripe large_file
% mv huge_file.restripe huge_file

4.

For more information, see Using Shift for Local Transfers and Tar Operations.

Stripe Files When Moving Them to a Lustre Filesystem

Note: Skip this tip if you are using the PFL filesystems, nobackupp[10-29].

When you copy large files onto the Lustre filesystems, such as from Lou or from remote
systems, be sure to use a sufficiently increased stripe count. You can do this before you create
the files by using the lfs setstripe command, or you can transfer the files using the shiftc tool,
which automatically stripes the files.

Note: Use mtar or shiftc (instead of tar) when you create or extract tar files on Lustre.

See the following articles for more information:

Lustre Basics - Setting Stripe Parameters•
Shift Command Options•
Using mtar to Create or Extract Tar Files on Lustre•

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the time,
hostname, PBS job number, name of the filesystem, and the path of the directory or file that you
are trying to access.Your report will help us correlate issues with recorded performance data to
determine the cause of efficiency problems.

Lustre Best Practices 29

Pleiades BeeGFS Filesystem

Pleiades BeeGFS Filesystem

A solid state drive (SSD)-based BeeGFS filesystem, /nobackupp3, is in early stages of testing
with a few users. Currently, it is only accessible from Pleiades front-end systems (PFEs) and
compute nodes. The compute nodes on Electra or Aitken cannot access this filesystem.

The total space on /nobackupp3 is 192 terabytes (TB) with 16 stripes, each with a maximum of
12 TB. With its current configuration, you cannot set or change the stripe counts. Quota limits
may be enabled in the future.

To view information about the filesystem, run:

% beegfs-ctl --listtargets --cfgFile=/etc/beegfs/beegfs-nbp3.conf --longnodes --spaceinfo
% beegfs-ctl --listtargets --cfgFile=/etc/beegfs/beegfs-nbp3.conf --state --longnodes

WARNING: There is no failsafe mechanism for /nobackupp3. If one SSD fails, the data it contains
cannot be recovered. Therefore, use Shift to copy any files you want to keep to your Lustre
/nobackup filesystem (for temporary storage) or to Lou (for long-term storage). Be sure to
properly stripe data copied to Lustre.

Using /nobackupp3

To use /nobackupp3 in a PBS job, you must ensure that it is mounted on all compute nodes
before the job starts. To do so, include it as a needed site in your PBS script. For example, the
following line mounts /nobackupp3, along with /home1 and /nobackupp8:

#PBS -l site=needed=/home1+/nobackupp3+/nobackupp8

Important: A job requesting Broadwell nodes might be run on Electra's Broadwell nodes instead
of Pleiades. To run a job that uses Broadwell nodes and accesses /nobackupp3, you must specify
Pleiades Broadwell nodes by using #PBS -l site=static_broadwell. For example:

#PBS -l select=xx:ncpus=28:mpiprocs=28:model=bro
#PBS -l site=static_broadwell
#PBS -l site=needed=/home1+/nobackupp3+/nobackupp8

For more information, see BeeGFS Basics.

Pleiades BeeGFS Filesystem 30

BeeGFS Basics

A BeeGFS filesystem is a parallel cluster filesystem managed with the BeeGFS software. BeeGFS
architecture is composed of four main services:

Management Service
A very lightweight service for maintaining a list of all other BeeGFS services and their
states.

Metadata Service
Stores information about the data, such as directory information, file and directory
ownership, and location of the user file contents on the storage targets. When a client
opens a file, the metadata service provides the stripe pattern to the client. Metadata
service is not involved in data read or write operations.

There can be many server instances providing metadata services in a BeeGFS filesystem.
Each service is responsible for its exclusive fraction of the global namespace. Having
more metadata servers improves the overall system performance. Also, using faster
processor cores for the metadata will have lower metadata access latency, providing
better performance.

Storage Service
Also referred to as the object storage service, this service stores striped user file
contents.

A storage server instance has one or more storage targets. The storage targets can be
hard disk drives (HDDs) or the flash memory of solid state drives (SSDs).

One strength of BeeGFS is its better performance compared to other filesystems in
handling small I/O. This is because it automatically uses all available RAM on the storage
servers for caching, so small I/O requests are aggregated into large blocks before the
data is written to disk.

Client Service
Mounts the filesystem to access the stored data. A BeeGFS client can be installed or
updated without a system reboot.

Using the BeeGFS Command

The BeeGFS command beegfs-ctl can be used to perform administrative functions and show
statistics:

pfe% which beegfs-ctl
/usr/bin/beegfs-ctl

To view beegfs-ctl options, run:

pfe% beegfs-ctl --help

BeeGFS Command Examples

To use these commands, you must specify a BeeGFS filesystem, using the --cfgFile option. In
the examples, the Pleiades BeeGFS filesystem /nobackupp3 (nbp3) is specified.

List the storage targets and their state:

pfe% beegfs-ctl --listtargets --cfgFile=/etc/beegfs/beegfs-nbp3.conf --state --longnodes

•

BeeGFS Basics 31

Find the total, free and % free space of the storage targets:

pfe% beegfs-ctl --listtargets --cfgFile=/etc/beegfs/beegfs-nbp3.conf --longnodes --spaceinfo

•

Find stripe pattern details of a directory or a file:

pfe% beegfs-ctl --getentryinfo --cfgFile=/etc/beegfs/beegfs-nbp3.conf /path/to/file/or/directory

•

List the node(s) used as metadata server(s):

pfe% beegfs-ctl --listnodes --nodetype=meta --cfgFile=/etc/beegfs/beegfs-nbp3.conf

•

List the nodes used as storage servers:

pfe% beegfs-ctl --listnodes --nodetype=storage --cfgFile=/etc/beegfs/beegfs-nbp3.conf
pfe% beegfs-ctl --listnodes --nodetype=storage --cfgFile=/etc/beegfs/beegfs-nbp3.conf --details

•

List the storage pools:

pfe% beegfs-ctl --liststoragepools --cfgFile=/etc/beegfs/beegfs-nbp3.conf

•

Additional Resources

Pleiades BeeGFS Filesystem•
Introduction to BeeGFS (PDF)•

BeeGFS Basics 32

https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf

	Table of Contents
	Filesystems
	Using Access Control Lists for File Sharing
	Using 'Giveto' to Copy Files and/or Directories to Another User
	Quota Policy on Disk Space and Files

	Pleiades Home Filesystem
	Pleiades Home Filesystems

	Pleiades Lustre Filesystems
	Pleiades Lustre Filesystems
	Lustre Basics
	Lustre Progressive File Layout (PFL) with SSD and HDD Pools
	Lustre Best Practices

	Pleiades BeeGFS Filesystem
	Pleiades BeeGFS Filesystem
	BeeGFS Basics

